File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one host to another host over a TCP-based network, such as the Internet.
FTP is built on a client-server architecture and uses separate control and data connections between the client and the server. FTP users may authenticate themselves using a clear-text sign-in protocol, normally in the form of a username and password.
But can connect anonymously if the server is configured to allow it. For secure transmission that hides (encrypts) the username and password, and encrypts the content, FTP is often secured with SSL/TLS ("FTPS"). SSH File Transfer Protocol ("SFTP") is sometimes also used instead, but is technologically different.
The first FTP client applications were command-line applications developed before operating systems had graphical user interfaces, and are still shipped with most Windows, Unix, and Linux operating systems. Dozens of FTP clients and automation utilities have since been developed for desktops, servers, mobile devices, and hardware, and FTP has been incorporated into hundreds of productivity applications, such as Web page editors.
FTP is built on a client-server architecture and uses separate control and data connections between the client and the server. FTP users may authenticate themselves using a clear-text sign-in protocol, normally in the form of a username and password.
But can connect anonymously if the server is configured to allow it. For secure transmission that hides (encrypts) the username and password, and encrypts the content, FTP is often secured with SSL/TLS ("FTPS"). SSH File Transfer Protocol ("SFTP") is sometimes also used instead, but is technologically different.
The first FTP client applications were command-line applications developed before operating systems had graphical user interfaces, and are still shipped with most Windows, Unix, and Linux operating systems. Dozens of FTP clients and automation utilities have since been developed for desktops, servers, mobile devices, and hardware, and FTP has been incorporated into hundreds of productivity applications, such as Web page editors.
The History From FTP (File Transfer Protocol)
The original specification for the File Transfer Protocol was written by Abhay Bhushan and published as RFC 114 on 16 April 1971. Until 1980, FTP ran on NCP, the predecessor of TCP/IP. The protocol was later replaced by a TCP/IP version, RFC 765 (June 1980) and RFC 959 (October 1985), the current specification. Several proposed standards amend RFC 959, for example RFC 2228 (June 1997) proposes security extensions and RFC 2428 (September 1998) adds support for IPv6 and defines a new type of passive mode.
Communication and transfer
FTP may run in active or passive mode, which determines how the data connection is established. In active mode, the client creates a TCP control connection. In situations where the client is behind a firewall and unable to accept incoming TCP connections, passive mode may be used. In this mode, the client uses the control connection to send a PASV command to the server and then receives a server IP address and server port number from the server, which the client then uses to open a data connection from an arbitrary client port to the server IP address and server port number received. Both modes were updated in September 1998 to support IPv6. Further changes were introduced to the passive mode at that time, updating it to extended passive mode.
The server responds over the control connection with three-digit status codes in ASCII with an optional text message. For example "200" (or "200 OK") means that the last command was successful. The numbers represent the code for the response and the optional text represents a human-readable explanation or request (e.g. <Need account for storing file>). An ongoing transfer of file data over the data connection can be aborted using an interrupt message sent over the control connection.
While transferring data over the network, four data representations can be used:
The server responds over the control connection with three-digit status codes in ASCII with an optional text message. For example "200" (or "200 OK") means that the last command was successful. The numbers represent the code for the response and the optional text represents a human-readable explanation or request (e.g. <Need account for storing file>). An ongoing transfer of file data over the data connection can be aborted using an interrupt message sent over the control connection.
While transferring data over the network, four data representations can be used:
- ASCII mode: used for text. Data is converted, if needed, from the sending host's character representation to "8-bit ASCII" before transmission, and (again, if necessary) to the receiving host's character representation. As a consequence, this mode is inappropriate for files that contain data other than plain text.
- Image mode (commonly called Binary mode): the sending machine sends each file byte for byte, and the recipient stores the bytestream as it receives it. (Image mode support has been recommended for all implementations of FTP).
- EBCDIC mode: use for plain text between hosts using the EBCDIC character set. This mode is otherwise like ASCII mode.
- Local mode: Allows two computers with identical setups to send data in a proprietary format without the need to convert it to ASCII
For text files, different format control and record structure options are provided. These features were designed to facilitate files containing Telnet or ASA
Data transfer can be done in any of three modes:
Data transfer can be done in any of three modes:
- Stream mode: Data is sent as a continuous stream, relieving FTP from doing any processing. Rather, all processing is left up to TCP. No End-of-file indicator is needed, unless the data is divided into records.
- Block mode: FTP breaks the data into several blocks (block header, byte count, and data field) and then passes it on to TCP.
- Compressed mode: Data is compressed using a single algorithm (usually run-length ecording).
Tidak ada komentar:
Posting Komentar